Co-polyester for 3D printing

colorFabb & 3DHubs workshop
Choosing the right material for the job.

Fairphone case

Print+

3DLabprint
Why 3D Hubs customers need co-polyesters.

- Tough & durable printed parts
- Heat resistance temperature starting at 75C up to 110C
- Complies with certain FDA food contact regulations
- Chemically resistant
Why you (the 3DHub) should print with co-polyesters.

- Odor neutral printing, no funny smells in your maker space
- Low fine particle emissions
- Traceable source, Amphora 3D Polymer
- Range of co-polyesters to choose from, mechanical properties and temperature resistance (75C to 110C)
What’s a co-polyester?

Copolyester ≠ PET
What’s a co-polyester?

- PET is a crystalline material mostly dedicated to Injection Stretch Blow Molding (ISBM) to produce bottles (soft drink and water).

- PET copolymerization gives a wide range of transparent materials suitable for:
 - Injection
 - Extrusion blow molding
 - Injection blow molding
 - Sheet extrusion
 - Glass Polymer
What’s a co-polyester?

The challenge for Eastman & colorFabb

Number of grades is virtually infinite. EASTMAN & colorFabb select and tweak the best ones for FFF 3D printing.
colorFabb nGen
- Processing temperature: 220C / 240C
- Bed temperature: 80C/90C
- Tg: 87C
- Toughness: +
- Ease of printing: +++

Durable
Visual prototyping
Good printability printing
Chemical resistance

colorFabb XT
- Processing temperature: 240C / 260C
- Bed temperature: 65C/75C
- Tg: 75C
- Toughness: ++
- Ease of printing: +

ABS alternative
Functional prototyping
Toughness
Chemical resistance

colorFabb 910A
- Processing temperature: 250C / 280C
- Bed temperature: 90C/110C
- Tg: 110C
- Toughness: +++
- Ease of printing: +/- (warping)

High temp resistance
Toughness
Chemical resistance
What’s a co-polyester?
What’s a co-polyester?
When to choose a copolyester. … and which one.

Applications which need heat resistance.

Chemical resistance, acids, base, oils etc.

Creep resistance
Parts under constant load

Durable applications

Toughness, impact resistant.
Which settings should you adapt for printing with copolyesters?

- 1. Speed | temperature | layerheight
- 2. Bridging
- 3. Retraction
- 4. Part cooling
- 5. Warping
Layerheight \times\text{ nozzle width} \times\text{ print speed} = \text{ Volume per second}
1. Speed, temperature and layerheight.

https://www.youmagine.com/designs/test-print-for-ultimaker--2
1. Speed, temperature and layerheight.

Make your own speed test – Solid cylinder

- No infill
- Spiralize mode (vase)
- No top / bottom
- Disable speed overrides, layer time, slow down for outer perimeters etc.

- Set speed
- Set temperature
- Set layerheight
- Set nozzle width

*Look for under extrusion
*Test layeradhesion with nail
1. Speed, temperature and layerheight.

Too fast printing -> under extrusion, material collecting on the nozzle instead of the layer, bad layer adhesion, not connecting perimeter lines

Too slow printing -> residence time too long, bubbly effect
1. Speed, temperature and layerheight.

Speed is a dynamic setting and therefore flow mm3/s varies, but temperature stays constant...
1. Speed, temperature and layerheight.
1. Speed, temperature and layerheight. Is there a minimal extrusion speed for a certain material + hot-end combination?
2. Bridging with copolyesters

Slicers have different ways of handling bridges.
2. Bridging with copolyesters

Simplify3D – lines in bridge direction
Perimeter line not recognized as bridge, no speed adjustment.
2. Bridging with copolyesters

MakerWare – regular infill lines
2. Bridging with copolyesters

Cura 16.04 – lines in bridge direction
Perimeter line not recognized as bridge, no speed adjustment.
2. Bridging with copolyesters

Slic3r – lines in bridge direction, even overlap to infill
Perimeter recognized as bridge.
3. Bridging

Bridging too fast -> break the melt, material collects on the nozzle.

Bridge multiplier too low can give similar result.

Parameters to tweak: bridging speed and bridge flow multiplier
3. Bridging

Bridging too slow -> material tends to drool and drop in loops.

Too much material gives the same result.

Parameters to tweak: bridging speed and flow multiplier
3. Bridging

Tip – use extra bottom / top layers to make sure bridge is fully closed.

Tip – check cooling settings, 100% cooling for bridging usually helps.

Tip – Play with bridge multiplier / speed
3. Bridging
4. Retraction

Usually higher retraction speed and distance compared to regular PLA settings.
4. Retraction

Also test bigger travel distances.
4. Retraction

Are the stringing a result of retraction settings or other reasons?

• Not enough cooling leads to upwards smearing leads to stringing.
• Travel moves over print can cause stringing.
• Failed bridges can result in stringing.

Parameters to tweak:
Travel speed – speed of movement without extruding
Retraction distance
Retraction length
Temperature
5. Part cooling / minimal layertime

cooling down below heat resistance temperature from processing temperature.

- Upwards bending of layer
- Rough surface
5. Part cooling / minimal layertime
5. Part cooling / minimal layertime

- Minimal Layertime too short / cooling to little?
- Minimal layer time too long / minimum print speed too slow
- Too much cooling? -> bad layer adhesion.
6. Warping

copolyesters need heated buildplate

• Good start point Heated bed around TG of material.
• 5/10 C lower or higher

• Buildsurface; 3DLac, BuildTak, Gluestick

• Add a brim or raft.

• Tip - Carefully check if you’re part needs cooling, if not leave it off.
• Tip - Check for airflow in the room, cold air makes it worse.
• Tip – more infill, more warping
• colorFabb 910A
 • - high bed temperature 100/110C for glass
 • 80/90C for PEI
 • 100C for BuildTak
6. Warping

Glass plate covered with 3DLac.
6. Warping

Glass plate covered with Buildtak
6. Warping

Glass plate covered with PEI
colorFabb nGen
- Processing temperature: 220C / 240C
- Bed temperature: 80C/90C
- TG: 87C
- Toughness: +
- Ease of printing: +++
- Durable
- Visual prototyping
- Good printability printing
- Chemical resistance

colorFabb XT
- Processing temperature: 240C /260C
- Bed temperature: 65C/75C
- TG: 75C
- Toughness: ++
- Ease of printing: +
- ABS alternative
- Functional prototyping
- Toughness
- Chemical resistance

colorFabb 910A
- Processing temperature: 250C /280C
- Bed temperature: 90C/110C
- TG: 110C
- Toughness: +++
- Ease of printing: +/- (warping)
- High temp resistance
- Toughness
- Chemical resistance
Have fun experimenting!
support@colorfabb.com
3dhubs.com/talk