Zur Startseite

Der vollständige technische Leitfaden

Spritzguss

Bereit zum Spritzgießen?

Sofortangebot erhalten
How to design parts for Injection Molding

SHARE THIS ARTICLE

SHARE THIS ARTICLE

In diesem Leitfaden erfahren Sie alles über das Spritzgießen und den Einstieg in die Massenproduktion von Kunststoffteilen. Sie erlernen die Grundprinzipien der Technologie und schnell umsetzbare Designtipps, die Zeit sparen und Kosten senken.

Part 1

Die Grundlagen

Was ist ein Spritzguss? Wie funktioniert er? Wofür wird er benutzt?

In diesem Abschnitt beantworten wir diese Fragen und zeigen Ihnen gängige Beispiele für Spritzgussteile, um Sie mit den grundlegenden Mechanismen und Anwendungen der Technologie vertraut zu machen.

Was ist ein Spritzguss?

Das Spritzgießen ist eine formgebende Fertigungstechnologie: Um ein Teil herzustellen, wird Kunststoff zuerst geschmolzen und dann in den Hohlraum eines Formwerkzeugs eingespritzt. Wenn sich das Material abkühlt, verfestigt es sich und nimmt die Geometrie (Form) des Formwerkzeugs an. Das Teil wird dann ausgeworfen und der Prozess beginnt von neuem.

Dies ist eine grundlegend andere Art der Herstellung als beim additiven Fertigungstechnologien (3D-Druck) oder subtraktiven Fertigungstechnologien (CNC-Bearbeitung). Das Fließen und Erstarren des Materials während des Spritzgießens hat einen erheblichen Einfluss auf die wichtigsten Designeinschränkungen für diese Technologie - mehr dazu unten.

The injection molding process

IM 101 – Das Spritzgussverfahren

Der Spritzguss wird heute häufig sowohl für Verbraucherprodukte als auch für technische Anwendungen eingesetzt. Nahezu jeder Kunststoffgegenstand in Ihrer Umgebung wurde im Spritzgussverfahren hergestellt. Dies ist auf die Fähigkeit der Technologie zurückzuführen, identische Teile mit sehr hohen Stückzahlen (normalerweise 1.000 bis über 100.000 Stück) zu sehr niedrigen Kosten pro Teil (normalerweise 1-5 US-Dollar pro Stück) herzustellen.

Im Vergleich zu anderen Technologien sind die Anlaufkosten des Spritzgießens jedoch relativ hoch, hauptsächlich aufgrund des Bedarfs an kundenspezifischen Werkzeugen. Eine einzige Form kann je nach Komplexität, Material (Aluminium oder Stahl) und Genauigkeit (Prototyp, Kleinserien- oder Großserienform) zwischen 3.000 bis über 100.000 USD kosten.

Alle thermoplastischen Materialien können spritzgegossen werden. Einige Arten von Silikon und anderen duroplastischen Harzen sind ebenfalls für das Spritzgussverfahren geeignet. Die am häufigsten verwendeten Materialien beim Spritzgießen sind:

  • Polypropylen (PP): ~38% der weltweiten Produktion
  • ABS: ~27% der weltweiten Produktion
  • Polyethylen (PE): ~15% der weltweiten Produktion
  • Polystyrol (PS): ~8% der weltweiten Produktion

Selbst wenn wir alle anderen möglichen Herstellungstechnologien berücksichtigen, macht das Spritzgießen mit diesen vier Materialien allein mehr als 40% aller Kunststoffteile aus, die jedes Jahr weltweit hergestellt werden!

Eine kurze Geschichte des Spritzgießens

Kunststoffe ersetzen Elfenbein

1869 erfand John Wesley Hyatt Celluloid, den ersten praktisch einsetzbaren Kunststoff, der Elfenbein für die Herstellung von ... Billardkugeln ersetzen sollte! Frühe Spritzgießmaschinen verwendeten einen Zylinder, um den Kunststoff zu erwärmen, und einen Kolben, um ihn in die Form zu spritzen.

Die revolutionäre Erfindung

Mitte der 1950er Jahre revolutionierte die Erfindung der Kolbenschraube im Alleingang die Kunststoffindustrie. Die Kolbenschraube löste wichtige Probleme mit ungleichmäßiger Erwärmung des Kunststoffs, mit dem frühere Systeme konfrontiert waren, und eröffnete neue Horizonte für die Massenproduktion von Kunststoffteilen.

Spritzgießen heute

Heute ist Spritzgießen ein Markt mit 300 Milliarden US-Dollar Umsatz. Weltweit werden jährlich mehr als 5 Millionen Tonnen Kunststoffteile im Spritzgussverfahren hergestellt. In letzter Zeit steigt der Bedarf an biologisch abbaubaren Materialien aus Umweltgründen.

Spritzgießmaschine: Wie funktionieren sie?

Eine Spritzgießmaschine besteht aus drei Hauptteilen: der Spritzeinheit, der Form - dem Herzstück des gesamten Prozesses - und der Spann-/Auswerfeinheit.

In diesem Abschnitt untersuchen wir den Zweck jedes dieser Systeme und wie sich deren grundlegende Funktionsmechanik auf das Endergebnis des Spritzgussprozesses auswirkt.

Sehen Sie sich eine große Spritzgießmaschine in Aktion an, während Sie im folgenden Video alle 3 Sekunden 72 Flaschenverschlüsse herstellt.

Die Spritzeinheit

IM 101 - Schema einer Spritzgießmaschine

Die Spritzeinheit dient dazu, den Rohkunststoff aufzuschmelzen und in die Form zu befördern. Sie besteht aus dem Trichter, dem Zylinder und der Kolbenschnecke.

Der Rohkunststoff kommt in Form von Pellets an. Im Trichter können die Pellets mit Pigmenten oder anderen Zusätzen (z. B. Glasfasern) gemischt werden. Auf diese Weise können Farbe und physikalische Eigenschaften der Formteile auf die spezifischen Anforderungen der jeweiligen Anwendung zugeschnitten werden.

Als Nächstes wird das Material in den Zylinder geleitet, in dem sich die Kolbenschnecke befindet.

Die Schnecke erfüllt zwei Aufgaben: Sie befördert die Pellets in Richtung der Form und komprimiert sie gleichzeitig. Tatsächlich erzeugen die durch die Bewegung der Schnecke verursachten Scherkräfte 60% bis 90% der zum Schmelzen der Kunststoffpellets erforderlichen Wärme. Der Rest wird durch die Heizbänder bereitgestellt, die um den Zylinder gewickelt sind.

Sobald sich genügend geschmolzenes Plastik vor der Schraube befindet, fährt der Kolben nach vorne und presst das Material in den leeren Hohlraum der Form (wie eine Spritze). Der gesamte Vorgang läuft kontinuierlich ab, sodass das Befüllen der Form nur wenige Sekunden dauert.

Manufacturing the mold

The mold is like the negative of a photograph: its geometry and surface texture is directly transferred onto the injection molded part.

It usually makes up the largest portion of the start-up costs in injection molding: the cost of a typical mold starts at approximately $2,000-5,000 for a simple geometry and relatively small production runs (1,000 to 10,000 units) and can go upwards to $100,000 for molds optimized for full-scale production (100,000 units or more).

This is due to the high level of expertise required to design and manufacture a high-quality mold that can produce accurately thousands (or hundreds of thousands) of parts.

Molds are usually CNC machined out of aluminum or tool steel and then finished to the required standard. Apart from the negative of the part, they also have other features, like the runner system that facilitates the flow of the material into the mold, and internal water cooling channels that aid and speed up the cooling of the part.

Learn more about CNC machining. Read the complete engineering guide

Recent advances in 3D printing materials have enabled the manufacturing of molds suitable for low-run injection molding (100 parts or less) at a fraction of the cost. Such small volumes were economically unviable in the past, due to the very high cost of traditional mold making.

An industrial mold design for producing a tens of thousands of parts number of plastic parts

An industrial mold design for producing a tens of thousands of parts number of plastic parts. The cavity is show on the left and the core on the right.

Die Anatomie der Form

IM 101 - Schema einer Spritzgussform

Die einfachste Form- die Ziehform (Straight-Pull-Form) - besteht aus zwei Hälften: dem Hohlraum und dem Kern. Für komplexere Teile mit Hinterschneidungen können auch Seitenkerne verwendet werden, die in einem Winkel in das Teil hinein- und aus ihm herausgleiten. Weitere Informationen zu Seitenkernen und Hinterschneidungen finden Sie in einem nächsten Abschnitt.

Der Kern und der Hohlraum haben unterschiedliche Funktionen. Der Kern ist die Formhälfte, die näher am Einspritzsystem liegt. Er bildet die „kosmetische“ Seite des Teils (A-Seite), die ein gutes optisches Erscheinungsbild erfordert. Der Hohlraum ist die hintere Formhälfte und bildet die „verborgene“ Funktionsseite (B-Seite), die alle Strukturelemente des Teils (Rippen, Vorsprünge usw.) umfasst.

Die Formen werden normalerweise aus Aluminium (für 1.000 bis 5.000 Einheiten) oder Werkzeugstahl (für über 100.000 Einheiten) CNC-bearbeitet. Für Kleinserien (<100 Einheiten) können die Formen sogar 3D-gedruckt werden, um die Vorlaufzeiten zu verkürzen.

Neben dem „Negativ“ des Teils weist eine Form andere Merkmale auf, die den Spritzvorgang unterstützen. Beispielsweise enthalten Formen häufig Kühlkanäle, die den Erstarrungsprozess beschleunigen, und Entlüftungsöffnungen, die dabei helfen, die Luft aus der leeren Form zu entfernen.

Interessante Tatsache: Etwa 50% der Dauer eines typischen Spritzgusszyklus‘ entfallen auf das Abkühlen und Erstarren der Teile. Das Minimieren der Dicke eines Designs ist der Schlüssel, um diesen Schritt zu beschleunigen und Kosten zu senken.

The 2 sides of the mold: A side & B side

Injection molded parts have two sides: the A side, which faces the cavity (front half of the mold) and the B side, which faces the core (back half of the mold). These two sides usually serve different purposes:

  • The A side usually has better visual appearance and is often called the cosmetic side. The faces on the A side will be smooth or will have a textured according to your design specifications.



  • The B side usually contains the hidden (but very important) structural elements of the part (the bosses, ribs, snap-fits and so on). For this reason it is called the functional side. The B side will often have a rougher finish and visible marks from the ejector pins.

Das Angusssystem

Der geschmolzene Kunststoff gelangt durch das Angusssystem in die Form. Das Angusssystem besteht normalerweise aus drei Hauptabschnitten: dem Anguss (dem Hauptkanal), den Läufern (den Führungskanälen) und dem Anschnitt (den Eintrittspunkten).

Verschiedene Arten von Anschnitten eignen sich für verschiedene Anwendungen. Die Abbildung zeigt einen * Kantenanschnitt*, während die Quader unten mit einem Heißanschnitt hergestellt wurden.

Das Angusssystem wird nach dem Auswerfen vom Teil abgeschnitten. Dies ist der einzige Materialabfall im Spritzguss, von dem 15-30% recycelt und wiederverwendet werden können.

Different gates types are suitable for different applications. There are 4 types of gates used in injection molding:

  • Edge gates inject material at the parting line of the two halves of the mold and are the most common gate type. The runner system has to be removed manually later, leaving a small imperfection at the injection point.

  • Tunnel gates inject material below the parting line. The runner system snaps off as the part is ejected from the mold, eliminating the need for manual removal. This makes this type of gate ideal for very large volumes.

  • Post gates inject the material from the backside of the cavity, hiding the small imperfection left from breaking the other gate types. These gates are used for parts that require excellent visual appearance.

  • Hot tips are directly connected to the spur and inject plastic from the top side of the part. No material is wasted this way on the runner system making them ideal for large scale production, but a dimple will be visible at the injection point.

Der Anguss

An dem Punkt, an dem das Läufersystem mit dem Teil verbunden ist, ist normalerweise eine kleine Unvollkommenheit sichtbar, die als Anguss bezeichnet wird.

Wenn das Vorhandensein des Angusses aus ästhetischen Gründen nicht erwünscht ist, kann er auch in der funktionalen B-Seite des Teils „verborgen“ sein.

Das Spann- und Auswerfsystem

Auf der anderen Seite einer Spritzgießmaschine befindet sich das Spannsystem. Das Spannsystem hat einen doppelten Zweck: Es hält die beiden Teile der Form während des Einspritzens fest geschlossen und drückt das Teil nach dem Öffnen aus der Form.

Nachdem das Teil ausgeworfen wurde, fällt es zur Lagerung auf ein Förderband oder einen Eimer und der Zyklus beginnt von vorne.

Die Ausrichtung der verschiedenen beweglichen Teile der Form ist jedoch niemals perfekt. Dies führt zur Entstehung von zwei häufigen Fehlern, die an fast jedem Spritzgussteil sichtbar sind:

  • Trennlinien, die an der Seite eines Teils sichtbar sind, an der sich die beiden Hälften der Form treffen. Sie werden durch winzige Fluchtungsfehler und die leicht gerundeten Kanten der Form verursacht.

  • Ejektor- (oder Werkzeug-)Spuren, die auf der verborgenen B-Seite des Teils sichtbar sind. Sie entstehen, weil die Auswerferstifte leicht über die Oberfläche der Form hinausragen oder darunter eingerückt sind.

Das folgende Bild zeigt die Form, mit der beide Seiten des Gehäuses für eine Fernbedienung hergestellt wurden. Kurzes Quiz: Versuchen Sie, den Kern (A-Seite), den Hohlraum (B-Seite), das Angusssystem, die Auswerferstifte, den Seitenkern und die Lüftungsschlitze bei dieser Form zu verorten.

IM 101 - Beispielform mit sichtbarer Trennfuge, Auswerferstiften, Angusssystem, Kavität, Kern und Seitenkern

Vorteile und Einschränkungen des Spritzgießens

Das Spritzgießen ist eine etablierte Fertigungstechnologie mit einer langen Geschichte, die jedoch ständig weiterentwickelt und mit neuen technologischen Fortschritten verbessert wird.

Im Folgenden finden Sie eine kurze Übersicht über die wichtigsten Vor- und Nachteile des Spritzgießens, um zu verstehen, ob dies die richtige Lösung für Ihre Anwendung ist.

Vorteile des Spritzgießens

Massenfertigung von Kunststoffen

Spritzgießen ist die kostengünstigste Technologie zur Herstellung großer Mengen identischer Kunststoffteile. Sobald die Form erstellt und die Maschine eingerichtet ist, können zusätzliche Teile sehr schnell und zu sehr geringen Kosten hergestellt werden.

Das empfohlene Mindestproduktionsvolumen für das Spritzgießen beträgt 500 Stück. Ab diesem Zeitpunkt beginnen sich Skaleneffekte bemerkbar zu machen, und die relativ hohen Anfangskosten für Werkzeuge wirken sich weniger stark auf den Stückpreis aus.

Breites Werkstoffspektrum

Nahezu jedes thermoplastische Material (und einige Duroplaste und Silikone) können spritzgegossen werden. Dies gibt eine sehr breite Palette verfügbarer Materialien mit unterschiedlichen physikalischen Eigenschaften, mit denen gestaltet werden kann.

Spritzgussteile haben sehr gute physikalische Eigenschaften. Ihre Eigenschaften können durch Verwendung von Additiven (z. B. Glasfasern) oder durch Zumischen verschiedener Pellets (z. B. PC/ABS-Mischungen) angepasst werden, um das gewünschte Maß an Festigkeit, Steifheit oder Schlagzähigkeit zu erreichen.

Sehr hohe Produktivität

Der typische Spritzgusszyklus dauert 15 bis 60 Sekunden, abhängig von der Größe des Teils und der Komplexität der Form. Im Vergleich dazu kann die CNC-Bearbeitung oder der 3D-Druck Minuten bis Stunden benötigen, um dieselbe Geometrie zu erzeugen. Eine einzelne Form kann auch mehrere Teile aufnehmen, wodurch die Produktionskapazitäten dieses Herstellungsprozesses weiter erhöht werden.

Dies bedeutet, dass hunderte (oder sogar tausende) identische Teile pro Stunde hergestellt werden können.

Hervorragende Wiederholgenauigkeit und Toleranzen

Der Spritzgussprozess ist sehr gut wiederholbar und die produzierten Teile sind im Wesentlichen identisch. Natürlich tritt im Laufe der Zeit ein gewisser Verschleiß an der Form auf, aber eine typische vorläufige Aluminiumform hat eine Lebensdauer von 5.000 bis 10.000 Zyklen, während Großserienformen aus Werkzeugstahl mehr als 100.000 Zyklen aushalten können.

Typischerweise werden beim Spritzgießen Teile mit Toleranzen von ± 0,500 mm hergestellt. Unter bestimmten Umständen sind auch engere Toleranzen bis zu ± 0,125 mm möglich. Diese Genauigkeit ist für die meisten Anwendungen ausreichend und mit der CNC-Bearbeitung und dem 3D-Druck vergleichbar.

Hervorragendes optisches Erscheinungsbild

Eine wesentliche Stärke des Spritzgießens besteht darin, dass fertige Produkte hergestellt werden können, die nur wenig oder gar keine zusätzliche Nachbearbeitung benötigen. Die Oberflächen der Form können sehr stark poliert werden, um spiegelähnliche Teile zu erzeugen. Oder sie können perlgestrahlt werden, um strukturierte Oberflächen zu erzeugen. Die SPI-Normen geben den Grad der Endbearbeitung vor, der erreicht werden kann.

Empfehlungen zur Verarbeitung/Materialverträglichkeit einholen →

Einschränkungen des Spritzgießens

Hohe Anlaufkosten für Werkzeuge

Die wirtschaftliche Haupteinschränkung beim Spritzgießen sind die hohen Werkzeugkosten. Da für jede Geometrie eine eigene Form angefertigt werden muss, sind die Anlaufkosten sehr hoch. Diese beziehen sich hauptsächlich auf das Design und die Herstellung der Form und variieren typischerweise zwischen 5.000 und 100.000 USD. Aus diesem Grund ist das Spritzgießen nur für Produktionen über 500 Stück wirtschaftlich.

Konstruktionsänderungen sind kostspielig

Nach der Herstellung einer Form ist deren Modifizierung sehr teuer: Konstruktionsänderungen erfordern in der Regel die Herstellung einer neuen Form von Grund auf. Aus diesem Grund ist es sehr wichtig, ein Teil für das Spritzgießen richtig zu konstruieren.

In Teil 2 listen wir die wichtigsten Designaspekte auf, die Sie beim Entwurf für das Spritzgießen berücksichtigen müssen. Mit Teil 5 erfahren Sie auch, wie Sie das Risiko verringern können, indem Sie physische Prototypen Ihrer Teile erstellen.

Längere Vorlaufzeiten als bei anderen Technologien

Die typische Bearbeitungszeit für das Spritzgießen variiert zwischen 6 und 10 Wochen - 4 bis 6 Wochen für die Herstellung der Form, plus 2 bis 4 Wochen für die Produktion und den Versand. Wenn Konstruktionsänderungen am Modell erforderlich sind, was durchaus üblich ist, erhöht sich die Bearbeitungszeit entsprechend.

Im Vergleich dazu können Teile, die in einem Desktop-3D-Drucker hergestellt wurden, über Nacht ausgeliefert werden, während industrielle 3D-Drucksysteme eine typische Vorlaufzeit von 3 bis 5 Tagen haben. CNC-gefräste Teile werden in der Regel innerhalb von 10 Tagen oder sogar innerhalb von 5 Tagen geliefert.

Beispiele für Spritzgussprodukte

Wenn Sie sich in diesem Moment umschauen, sehen Sie mindestens einige Produkte, die im Spritzgussverfahren hergestellt wurden. Wahrscheinlich sehen Sie sich gerade eines an: das Gehäuse des Geräts, mit dem Sie diesen Führer lesen.

Um sie zu erkennen, achten Sie auf diese drei Punkte: eine Trennlinie, Auswurfspuren auf der verborgenen Seite und eine relativ gleichmäßige Wandstärke im gesamten Teil.

Wir haben hier einige Beispiele gebräuchlicher Spritzgussprodukte zusammengestellt, um ein besseres Verständnis dafür zu erhalten, was mit diesem Herstellungsverfahren erreicht werden kann.

Spielzeug
Verpackung …
Miniaturen
Automobilb …
Elektrik
Gesundheit …

Legosteine

Legosteine sind eines der bekanntesten Beispiele für Spritzgussteile. Sie werden mit Formen wie der abgebildeten hergestellt, die 120 Millionen Legosteine (das sind 15 Millionen Zyklen) produzierte, bevor sie außer Betrieb genommen wurde.

Das für Legosteine verwendete Material ist ABS aufgrund seiner hohen Schlagfestigkeit und ausgezeichneten Formbarkeit. Jeder einzelne Stein wurde perfekt konstruiert, um Toleranzen von bis zu 10 Mikrometern (oder einem Zehntel menschlicher Haare) zu erreichen. Dies wird teilweise durch die Verwendung der besten Entwurfspraktiken erreicht, die wir im nächsten Abschnitt untersuchen werden (einheitliche Wandstärke, Entwurfswinkel, Rippen, geprägter Text usw.).

A retired Lego brick mold

Flaschenverschlüsse

Viele Kunststoffverpackungen werden im Spritzgussverfahren hergestellt. Tatsächlich ist das Verpackungswesen der größte Markt für den Spritzguss.

Beispielsweise werden Flaschenverschlüsse aus Polypropylen spritzgegossen. Polypropylen (PP) hat eine hervorragende chemische Beständigkeit und ist für den Kontakt mit Lebensmitteln geeignet.

Auf Flaschenverschlüssen können Sie auch alle gängigen Spritzgussfehler (Trennlinie, Auswurfspuren usw.) und die gängigen Konstruktionsmerkmale (Rippen, Freistreifen usw.) erkennen.

Flugmodell

Modellflugzeuge sind ein weiteres bekanntes Beispiel für Spritzgussteile. Das hier verwendete Material ist hauptsächlich Polystyrol (PS), da es kostengünstig und leicht zu formen ist.

Interessant an Modellflugzeug-Bausätzen ist, dass das Angusssystem noch angebracht ist. So können Sie den Weg sehen, den der geschmolzene Kunststoff zurückgelegt hat, um die leere Form zu füllen.

Autoteile

Nahezu jedes Kunststoffbauteil im Innenraum eines Autos wurde spritzgegossen. Die drei in der Automobilindustrie am häufigsten verwendeten Spritzgussmaterialien sind Polypropylen (PP) für unkritische Teile, PVC für seine gute Witterungsbeständigkeit und ABS für seine hohe Schlagzähigkeit.

Mehr als die Hälfte der Kunststoffteile eines Autos besteht aus einem dieser Materialien, einschließlich der Stoßstangen, der inneren Karosserieteile und der Armaturenbretter.

Unterhaltungselektronik

Die Gehäuse fast aller in Serie hergestellten Unterhaltungselektronikgeräte werden spritzgegossen. Hier werden ABS und Polystyrol (HDPE) wegen ihrer hervorragenden Schlagzähigkeit und guten elektrischen Isolation bevorzugt.

Medizinische Geräte

Viele sterilisierbare und biokompatible Materialien sind für das Spritzgießen verfügbar.

Medizinisches Silikon ist eines der beliebtesten Materialien in der Medizinbranche. Da Silikon ein Duroplast ist, sind spezielle Maschinen und Prozesskontrollen erforderlich, was die Kosten erhöht.

Für Anwendungen mit weniger strengen Anforderungen sind andere Materialien wie ABS, Polypropylen (PP) und Polyethylen (PE) üblicher.

Part 2

Design für den Spritzguss

In diesem Abschnitt erfahren Sie, wie Sie Ihre Konstruktionen für das Spritzgießen optimieren können.

Verwenden Sie die folgenden Leitlinien, um Zeit zu sparen und Ausfälle zu reduzieren, und lernen Sie, wie Sie Merkmale erstellen, die die Funktionalität Ihrer Designs maximieren.

Häufige Spritzgussdefekte

Die meisten Defekte beim Spritzgießen hängen entweder mit dem Fließen des geschmolzenen Materials oder seiner ungleichmäßigen Abkühlgeschwindigkeit während des Erstarrens zusammen.

Hier ist eine Liste von Fehlern, die ein Ingenieur beim Entwerfen eines Teils für das Spritzgießen berücksichtigen sollte. Im nächsten Abschnitt erfahren Sie, wie Sie diese vermeiden können, indem Sie die bewährten Entwurfspraktiken befolgen.

Verziehen

Wenn bestimmte Abschnitte schneller abkühlen (und dadurch schrumpfen) als andere, kann sich das Teil aufgrund innerer Spannungen dauerhaft verziehen.

Teile mit nicht konstanter Wandstärke neigen am stärksten zum Verziehen.

Sinkstellen

Wenn sich das Innere eines Teils vor seiner Oberfläche verfestigt, kann eine kleine Vertiefung in einer ansonsten ebenen Oberfläche auftreten, die als Sinkstelle bezeichnet wird.

Teile mit dicken Wänden oder schlecht geformten Rippen neigen am ehesten zu Sinkstellen.

Ziehspuren

Wenn der Kunststoff schrumpft, übt er Druck auf die Form aus. Während des Auswurfs gleiten und kratzen die Wände des Teils gegen die Form, was zu Abriebspuren führen kann.

Teile mit senkrechten Wänden (und ohne Verzugswinkel) sind am anfälligsten für Spuren.

Grenzlinien

Wenn sich zwei Materialflüsse treffen, können sich kleine haarartige Verfärbungen entwickeln. Diese Grenzlinien wirken sich einerseits auf die Ästhetik der Teile aus, verringern jedoch im Allgemeinen auch die Festigkeit des Teils.

Teile mit abrupten Geometrieänderungen oder Löchern neigen eher zu Grenzlinien.

Kurzteile

In der Form eingeschlossene Luft kann den Materialfluss während des Einspritzens behindern, was zu einem unvollständigen Teil führt. Gutes Design kann die Fließfähigkeit des geschmolzenen Kunststoffs verbessern.

Teile mit sehr dünnen Wänden oder schlecht geformten Rippen neigen eher zu verkürzten Teilen.

Designregeln für das Spritzgießen

Lassen Sie uns sehen, wie diese Prozessbeschränkungen in umsetzbare Gestaltungsrichtlinien umgesetzt werden können.

In den folgenden Abschnitten fassen wir die wichtigsten Designregeln für die Konstruktion von Spritzgussteilen sowie Tipps zur korrekten Konstruktion der häufigsten Merkmale von Spritzgussteilen zusammen.

Lesen Sie die vollständigen Gestaltungsleitlinien für Spritzguss →

Verwenden Sie eine konstante Wandstärke

Empfohlene Dicke: 1 mm und 3 mm

Konstruieren Sie Teile immer mit der kleinstmöglichen (und konstanten) Wandstärke, um Verwerfungen und Einsenkungen zu vermeiden.

Wenn dickere Querschnitte erforderlich sind, höhlen Sie diese aus und versteifen Sie diese stattdessen mit Rippen (#common-design-features). Beachten Sie, dass jede Erhöhung der Wandstärke um 10% zu einer Erhöhung der Steifigkeit um ca. 30% führt.

Siehe Empfehlungen für materialspezifische Wandstärken →

Make the transition as smooth as possible at section of non-uniform wall thickness
Make the transition as smooth as possible at section of non-uniform wall thickness


A wall thickness between 1.2 mm and 3 mm is a safe value for most materials. The next table summarises specific recommended wall thicknesses for some of the most common injection molding materials:

Material Recommended wall thickness [mm] Recommended wall thickness [inches]
Polypropylene (PP) 0.8 - 3.8 mm 0.03'' - 0.15''
ABS 1.2 - 3.5 mm 0.045'' - 0.14''
Polyethylene (PE) 0.8 - 3.0 mm 0.03'' - 0.12''
Polystyrene (PS) 1.0 - 4.0 mm 0.04'' - 0.155''
Polyurethane (PUR) 2.0 - 20.0 mm 0.08'' - 0.785''
Nylon (PA 6) 0.8 - 3.0 mm 0.03'' - 0.12''
Polycarbonate (PC) 1.0 - 4.0 mm 0.04'' - 0.16''
PC/ABS 1.2 - 3.5 mm 0.045'' - 0.14''
POM (Delrin) 0.8 - 3.0 mm 0.03'' - 0.12''
PEEK 1.0 - 3.0 mm 0.04'' - 0.12''
Silicone 1.0 - 10.0 mm 0.04'' - 0.40''

For best results:

Use a uniform wall thickness within the recommended values
When different thickness are required, smoothen the transition using a chamfer or fillet with length that is 3x the difference in thickness

Hollow out thick sections

Thick sections can lead to various defects, including warping and sinking. Limiting the maximum thickness of any section of your design to the recommended values by making them hollow is essential.

To improve the strength of hollow section, use ribs to design structures of equal strength and stiffness but reduced wall thickness. A well-designed part with hollow sections is shown below:

Hollow thick sections and add ribs to improve stiffness


Ribs can also be used to improve the stiffness of horizontal sections without increasing their thickness. Remember though that the wall thickness limitations still apply. Exceeding the recommended rib thickness (see below) can result in sink marks.

The wall thickness limitations still apply for ribs


For best results:

Hollow out thick sections and use ribs to improve the strength and stiffness of the part
Design ribs with max. thickness equal to 0.5x the wall thickness
Design ribs with max. height equal to 3x the wall thickness

Glatte Übergänge hinzufügen

Empfohlen: 3 × Wandstärkendifferenz

Manchmal lassen sich Querschnitte mit unterschiedlichen Wandstärken nicht vermeiden. Verwenden Sie in diesen Fällen eine Fase oder Verrundung, um den Übergang so glatt wie möglich zu gestalten.

Ebenso muss die Basis vertikaler Merkmale (wie Rippen, Vorsprünge, Schnappverschlüsse) immer abgerundet sein.

Alle Kanten abrunden

Innenkanten:> 0,5 × Wandstärke

Außenkanten: Innenkante + Wandstärke

Die Regel der konstanten Wandstärke muss auch auf die Ecken des Teils angewendet werden. Fügen Sie an allen Innen- und Außenkanten eine Verrundung mit einem möglichst großen Radius hinzu.

Add wide radii to all edges to maintain uniform wall thickness and avoid defects

Add wide radii to all edges to maintain uniform wall thickness and avoid defects



For best results:

Add a fillet equal to 0.5x the wall thickness to internal corners
Add a fillet equal to 1.5x the wall thickness to external corners

Entformungswinkel hinzufügen

Empfohlenes Minimum:> 2°

Fügen Sie allen vertikalen Wänden einen Entformungswinkel hinzu, um das Auswerfen des Teils zu erleichtern und Zugspuren zu vermeiden. Wenn sie einem funktionalen Zweck dienen, können die Außenwände unbearbeitet bleiben (siehe Legosteine).

Erhöhen Sie den Entformungswinkel in den folgenden Fällen über den empfohlenen Wert:

● Erhöhen Sie ihn bei Teilen, die größer als 50 mm sind, alle 25 mm um 1°

● Erhöhen Sie den Entformungswinkel für strukturierte Teile um 1° -2°

A good rule of thumb is to increase the draft angle by one degree for every 25 mm. For example, add a draft angle of 3o degrees to a feature that is 75 mm tall. Larger draft angle should be used if the part has a textured surface finish. As a rule of thumb, add 1o to 2o extra degrees to the results of the above calculations.

Remember that draft angles are also necessary for ribs. Be aware though that adding an angle will reduce the thickness of the top of the rib, so make sure that your design complies with the recommended minimum wall thickness.

Add a draft angle (minimum 2o)to all vertical walls
Add a draft angle (minimum 2o)to all vertical walls


For best results:

Add a minimum draft angle of 2o degrees to all vertical walls
For features taller than 50 mm, increase the draft angle by one degree every 25 mm
For parts with textured surface finish, increase the the draft angle by 1-2o extra degrees

Umgang mit Hinterschneidungen

Ein wichtiger Aspekt beim Entwerfen von Teilen für das Spritzgießen sind Hinterschneidungen.

Hinterschneidungen beim Spritzgießen sind Teilemerkmale, die mit einer einfachen zweiteiligen Form nicht hergestellt werden können, da beim Öffnen der Form oder beim Auswerfen Material im Weg wäre.

Die Zähne eines Gewindes oder der Haken einer Schnappverbindung sind Beispiele für Hinterschneidungen. Im Folgenden finden Sie einige einfache Lösungen für den Umgang mit Hinterschneidungen:

Absperrungen verwenden

Eine andere Möglichkeit, mit Hinterschneidungen umzugehen, besteht darin, Material unter oder über dem Problembereich zu entfernen. Auf diese Weise wird die Hinterschneidung beseitigt, da das gesamte Teil direkt von der Form getragen werden kann.

Absperrungen sind ein nützlicher Trick, um mit Hinterschneidungen an Innenbereichen des Teils (für Schnappverbindungen) oder an den Seiten des Teils (für Löcher oder Griffe) umzugehen.

Below are some examples of how injection molded parts can be redesigned to avoid undercuts: essentially, material is removed in the area under the undercut, eliminating the issue altogether.

Examples of design alteration that can help you eliminate undercuts Examples of design alteration that can help you eliminate undercuts

Trennlinie verschieben

Die einfachste Möglichkeit, mit einer Hinterschneidung umzugehen, besteht darin, die Trennlinie der Form so zu verschieben, dass sie diese schneidet.

Diese Lösung eignet sich für viele Designs mit Hinterschneidungen auf einer Außenfläche. Vergessen Sie nicht, die Verzugswinkel entsprechend anzupassen.

Hinterschneidungen entfernen

Wenn das Teil flexibel genug ist, kann es beim Auswerfen über die Form verformt werden. Das Abstreifen von Hinterschneidungen wird für interne Merkmale wie das Gewinde von Flaschenverschlüssen verwendet.

Verwenden Sie diese Leitlinien, um Hinterschneidungen für das Abstreifen zu entwerfen:

● Wählen Sie ein flexibles Material - wie PP, PE oder Nylon (PA)

● Die Höhe der Hinterschneidung sollte 5% des Lochdurchmessers betragen

● Verwenden Sie einen Steigungswinkel von 30° bis 45°

It is recommended to avoid stripping undercuts in parts made from fiber reinforced plastics. Typically, flexible plastics such as PP, HDPE or Nylon (PA) can tolerate undercuts of up to 5% of their diameter.

Examples of design alteration that can help you eliminate undercuts
Example part with stripping undercuts. The part is deformed as it is pushed out of the mold.

Seitenkerne

Wenn keine der oben genannten Lösungen durchführbar ist, können Kerne verwendet werden, die von der Seite aus dem Teil herausgleiten, bevor es ausgeworfen wird.

Seitenkerne sollten sparsam eingesetzt werden, da sie die Komplexität erhöhen und die Gesamtkosten einer Form um 15% bis 30% erhöhen.

Befolgen Sie diese Richtlinien beim Entwerfen eines Seitenkerns:

● Der Kern muss sich parallel zur Trennlinie bewegen

● Entwurfswinkel müssen wie gewohnt hinzugefügt werden

Gängige Designeigenschaften

Nachstehend finden Sie praktische Leitlinien für die Gestaltung der häufigsten Merkmale von Spritzgussteilen. Verwenden Sie sie, um die Funktionalität Ihrer Entwürfe zu verbessern und gleichzeitig die grundlegenden Entwurfsregeln einzuhalten.

Threaded fasteners (bosses and inserts)

There are 3 ways to add fasteners to an injection molded part: by designing a thread directly on the part, by adding a boss where the screw can be attached, or by including a threaded insert.

Modelling a thread directly on the part is possible, but not recommended, as the teeth of the thread are essentially undercuts, increasing drastically the complexity and cost of the mold (we will more about undercuts in a later section). An example of an injection molded part with a thread are bottle caps.

Bossen

Bossen (Vorsprünge) werden als Befestigungspunkte verwendet (in Verbindung mit selbstschneidenden Schrauben oder Gewindeeinsätzen).

Stellen Sie sich Bossen als kreisförmige Rippen vor - es gelten dieselben allgemeinen Gestaltungsrichtlinien. Dabei sind folgende Faktoren zu berücksichtigen:

● Vermeiden Sie es, Bossen zu entwerfen, die in Hauptwände übergehen

● Stützen Sie die Bossen mit Rippen ab oder verbinden Sie sie mit einer Hauptwand

Für Bossen mit Einsätzen:

● Verwenden Sie einen Außendurchmesser, der 2 × der Nenngröße des Einsatzes entspricht.

Recommended design of a boss


When bosses are used as points of fastening, the outer diameter of the boss should be 2x the nominal diameter of the screw or insert and its inner diameter equal to the diameter of the core of the screw. The hole of the boss should extend to the base-wall level, even if the full depth is not needed for assembly, to maintain a uniform wall thickness throughout the feature. Add a chamfer for easy insertion of the screw or insert.

For best results:

Avoid designing bosses that merge into main walls
Support bosses with ribs or connect them to a main wall
For bosses with inserts, use an outer diameter equal to 2× the insert's nominal size

Gewinde

Gewinde können direkt zur Formteilkonstruktion hinzugefügt werden, es werden dabei jedoch Hinterschneidungen eingeführt. Alternativ können Gewindeeinsätze verwendet werden.

Befolgen Sie folgende Leitlinien, wenn Sie Teile mit Gewinden konstruieren:

● Fügen Sie an den Kanten des Gewindes ein Relief von 0,8 mm hinzu

● Verwenden Sie ein Gewinde mit einer Steigung von mehr als 0,8 mm (32 Gewindegänge pro Zoll).

● Verwenden Sie vorzugsweise ein Gewinde mit Trapezform oder Sägezahnform.

So gehen Sie mit den erstellten Hinterschneidungen um:

● Ziehen Sie bei Innengewinden in Betracht, Hinterschneidungen zu entfernen

● Platzieren Sie Außengewinde entlang der Trennlinie

A threaded insert placed in a boss


For best results:

Avoid adding threads directly on your injection molded part
Design bosses with an outer diameter equal 2x the nominal diameter of the screw or insert
Add a 0.8 mm relief at the edges of the thread
Use a thread with a pitch greater than 0.8 mm (32 threads per inch)
Use a a trapezoidal or buttress thread

Best way to deal with the created undercuts:

Use a thread with a pitch greater than 0.8 mm (32 threads per inch)
For external threads, place them along the parting line

Rippen

Wenn selbst die maximale empfohlene Wandstärke nicht ausreicht, um die funktionalen Anforderungen eines Teils zu erfüllen, können Rippen verwendet werden, um dessen Steifigkeit zu erhöhen.

Bei der Gestaltung von Rippen gilt:

● Verwenden Sie eine Dicke von 0,5 × der Hauptwandstärke

● Definieren Sie eine Höhe, die kleiner als 3 × die Rippendicke ist

● Verwenden Sie eine Grundrundung mit einem Radius größer als ¼ × Rippendicke

● Fügen Sie einen Verzugswinkel von mindestens 0,25° - 0,5° hinzu

● Fügen Sie eine min. Abstand zwischen Rippen und Wänden von 4 × der Rippendicke ein

Schnappverbindungen

Schnappverbindungen sind eine kostengünstige und schnelle Möglichkeit, zwei Teile ohne Befestigungselemente oder Werkzeuge zu verbinden.

Bei der Gestaltung von Schnappverschlüssen für das Spritzgießen gilt:

● Fügen Sie den Seitenwänden des Schnappverschlusses einen Luftzug hinzu

● Verwenden Sie eine Dicke von 0,5 × Hauptwandstärke

● Passen Sie die Breite und Länge an, um die Durchbiegung und Kraft zu steuern

● Überlegen Sie, wie Sie mit der erstellten Hinterschneidung umgehen sollen

Detaillierte Richtlinien finden Sie in diesem Artikel vom MIT.

Example of an assembly with snap-fit joints


In the example above, the most common snap-fit joint design (known as the cantilever snap-fit joint) is shown. As with ribs, add a draft angle to your snap-fit joints and use a minimum thickness of 0.5x the wall thickness.

Specific guidelines on designing snap-fit joints is a big subject that goes beyond the scope of this article. For more detailed information, please refer to this article from MIT.

For best results:

Add a draft angle to the vertical walls of your snap-fit joints
Design snap-fits with thickness greater than 0.5x the wall thickness
Adjust their width and length to control their deflection and permissible force

Folienscharniere

Folienscharniere sind dünne Kunststoffabschnitte, die zwei Segmente eines Teils verbinden und gebogen und geklappt werden können.

Im Folgenden finden Sie einige Tipps zum Entwerfen eines Folienscharniers:

● Wählen Sie ein flexibles Material (zum Beispiel PP, PE oder Nylon)

● Entwerfen Sie die Scharniere mit einer Dicke zwischen 0,20 und 0,35 mm

● Verwenden Sie Schultern mit einer Dicke, die der Dicke der Hauptwand entspricht

● Fügen Sie so große Füllungen wie möglich hinzu

A well-designed hinge is shown below. The recommended minimum thickness of the hinge ranges between 0.20 and 0.35 mm, with higher thicknesses resulting in more durable, but stiffer, parts.



Example of an living hinge (left) and recommended design dimensions for PP or PE (right)


Before going to full-scale production, prototype your living hinges using CNC machining or 3D printing to determine the geometry and stiffness that best fits your application. Add generous fillets and design shoulders with a uniform wall thickness as the main body of the part to improve the material flow in the mold and minimize the stresses. Divide hinges longer than 150 mm in two (or more) to improve lifetime.

For detailed guidelines, please refer to this MIT guide.

For best results:

Design hinges with a thickness between 0.20 and 0.35 mm
Select a flexible material (PP, PE or PA) for parts with living hinges
Use shoulders with a thickness equal the thickness of the main wall
Add fillets as large as possible

Quetschrippen

Quetschrippen verformen sich und erzeugen Reibung zwischen dem Teil und dem eingesetzten Bauteil, wodurch es an seinem Platz gesichert wird.

Sie sind eine schnelle und kostengünstige Methode, um Lager oder andere Einsätze in Ihre Konstruktionen einzubauen. Verwenden Sie für High-End-Anwendungen stattdessen eine Presspassung.

Beim Entwerfen von Quetschrippen gilt:

● Verwenden Sie drei kreisförmige Rippen mit einem Radius von 2 mm

● Fügen Sie eine minimale Überlappung von 0,25 mm zwischen Rippe und Einsatz hinzu

● Fügen Sie dem Loch einen Luftzug hinzu, verziehen Sie jedoch nicht die Rippen

An example of a part with crush ribs is shown below. Using three crush ribs is recommended to ensure good alignment. The recommended height/radius for each rib is 2 mm. Add a minimum interference of 0.25 mm between the crush rib and the fitted part. Because of the small surface contact with the mold, crush ribs can be designed without a draft angle.

Example of an crush rib (left) and recommended design dimensions (right)


For best results:

Add a minimum interference of 0.25 mm between crush rib and the component
Do not add a draft angle on the vertical walls of a crush rib

Schrift und Symbole

Text, Logos und andere Symbole können auf der Oberfläche von Spritzgussteilen eingraviert oder geprägt werden.

Hier einige Tipps zum Hinzufügen von Text:

● Prägen ist besser Gravieren

● Richten Sie den Text senkrecht zur Trennlinie aus

● Verwenden Sie eine Höhe (oder Tiefe) von mehr als 0,5 mm

● Verwenden Sie eine Schrift mit einheitlicher Schriftstärke

● Die Schriftgröße sollte mindestens 20 Punkte betragen

For best results:

Use embossed text (0.5 mm height) instead of engraved texted
Use a font with uniform thickness and a minimum font size of 20 points
Align the text perpendicular to the parting line
Use a height (or depth) greater than 0.5 mm

Toleranzen

Das Spritzgießen erzeugt typischerweise Teile mit Toleranzen von ± 0,500 mm.

Engere Toleranzen sind unter bestimmten Umständen möglich (bis zu ± 0,125 mm - und sogar ± 0,025 mm), erhöhen jedoch die Kosten drastisch.

Bei kleinen Serien (< 10.000 Teile) sollten Sie eine zweite Operation (z. B. Bohren) in Betracht ziehen, um die Genauigkeit zu verbessern. Dies stellt die korrekte Interaktion des Teils mit anderen Bauteilen oder Einsätzen sicher (z. B. bei Verwendung von Presspassungen).

Part 3

Spritzgussmaterialien

Spritzguss ist mit einer Vielzahl von Kunststoffen möglich. In diesem Abschnitt erfahren Sie mehr über die wichtigsten Eigenschaften der beliebtesten Materialien. Wir gehen auch auf die Standardoberflächen ein, die für Spritzgussteile verwendet werden können.

Spritzgussmaterialien

Alle Thermoplaste können spritzgegossen werden. Einige Duroplaste und Flüssigsilikone sind ebenfalls für das Spritzgussverfahren geeignet.

Sie können auch mit Fasern, Kautschukpartikeln, Mineralien oder Flammschutzmitteln vermischt werden, um ihre physikalischen Eigenschaften zu ändern. Zum Beispiel kann Glasfaser mit den Pellets in Verhältnissen von 10%, 15% oder 30% gemischt werden, was zu Teilen mit höherer Steifheit führt.

An additive that is commonly used to improve the stiffness of the injection molded parts is fiberglass. The glass fibers can be mixed with the pellets at ratios of 10%, 15% or 30%, resulting in different mechanical properties.

Colorant can be added to the mixture (at a ratio of about 3%) to create a great variety of colored parts. Standard colors include red, green, yellow, blue, black and white and they can be mixed to create different shades.

Oberflächen- und SPI-Standards

Spritzgussteile werden in der Regel nicht nachbearbeitet, sondern die Form selbst kann unterschiedlich endbearbeitet werden.

Auf diese Weise können ästhetische Anforderungen (z. B. eine spiegelglatte oder matte Oberfläche) oder technische Anforderungen (z. B. spezifische Oberflächenrauheit oder Toleranzen) erfüllt werden.

Die Society of Plastics Industry (SPI) hat verschiedene Standardveredelungsverfahren eingeführt, die zu unterschiedlichen Oberflächenveredelungen von Teilen führen.

Oberfläche Beschreibung Anwendung
Glänzende Oberfläche

SPI-Standard: A-1, A-2, A-3
Die Form wird geglättet und anschließend mit einem Diamantschliff poliert, wodurch Teile mit einer spiegelnden Oberfläche erhalten werden. Geeignet für Teile, die für kosmetische oder funktionelle Zwecke die glatteste Oberfläche benötigen (Ra <0,10 μm)
Halbglänzende Oberfläche

SPI-Standard: B-1, B-2, B-3
Die Form wird mit feinkörnigem Schleifpapier geglättet, wodurch Teile mit einer feinen Oberflächenbeschaffenheit erhalten werden. Geeignet für Teile, die ein gutes optisches Erscheinungsbild, aber keinen Hochglanz erfordern.
Matte Oberfläche

SPI-Standard: C-1, C-2, C-3
Die Form wird mit feinem Steinpulver geglättet, wobei alle Bearbeitungsspuren entfernt werden. Geeignet für Teile mit geringen ästhetischen Anforderungen, aber wenn Bearbeitungsspuren nicht akzeptabel sind.
Texturierte Oberfläche

SPI-Standard: D-1, D-2, D-3
Die Form wird zuerst mit feinem Steinpulver geglättet und dann sandgestrahlt, wodurch eine strukturierte Oberfläche entsteht. Geeignet für Teile, die eine seidenmatte oder matt strukturierte Oberfläche benötigen.
Oberfläche ab Maschine Die Form wird nach Ermessen des Maschinenführers fertiggestellt. Werkzeugspuren können sichtbar sein. Geeignet für nicht kosmetische, industrielle Teile oder versteckte Komponenten.

Part 4

Kostensenkungstipps

Erfahren Sie mehr über die wichtigsten Kostentreiber beim Spritzgießen und drei umsetzbare Designtipps, mit denen Sie die Kosten senken und Ihr Projekt im Rahmen Ihres Budgets halten können.

Kostentreiber im Spritzguss

Die Hauptkostentreiber im Spritzguss sind:

  • Werkzeugkosten bestimmt durch die Gesamtkosten für Entwurf und Bearbeiten des Formwerkzeugs
  • Materialkosten bestimmt durch das Volumen des verwendeten Materials und dessen Preis pro Kilogramm
  • Produktionskosten richten sich nach der Gesamtbetriebszeit der Spritzgießmaschine

Die Werkzeugkosten sind konstant (von 3.000 bis 5.000 USD) und unabhängig von der Gesamtzahl der hergestellten Teile, während die Material- und Produktionskosten vom Produktionsvolumen abhängen.

Bei kleineren Produktionsserien (1.000 bis 10.000 Stück) haben die Werkzeugkosten den größten Einfluss auf die Gesamtkosten (ca. 50-70%). Es lohnt sich also, Ihr Design entsprechend zu ändern, um den Herstellungsprozess der Form zu vereinfachen (und damit die Kosten zu senken).

Bei größeren Stückzahlen bis zur Großserienproduktion (10.000 bis über 100.000 Stück) wird der Beitrag der Werkzeugkosten zu den Gesamtkosten durch die Material- und Produktionskosten übertroffen. Ihr Hauptanliegen bei der Entwicklung sollte es daher sein, sowohl das Volumen als auch die Zeit des Spritzgusszyklus‘ zu minimieren.

Hier haben wir einige Tipps zusammengestellt, mit denen Sie die Kosten Ihres Spritzgussprojekts minimieren können.

Tipp 1: Halten Sie sich an die gerade Ziehform

IM 101 - Halten Sie sich an die gerade Ziehform

Seitenkerne und andere Mechanismen in der Form können die Werkzeugkosten schnell um 15% bis 30% erhöhen. Dies entspricht einem zusätzlichen Mindestaufwand für die Werkzeuge von ca. 1.000 bis 1.500 US-Dollar.

In einem früheren Abschnitt haben wir Möglichkeiten untersucht, mit Hinterschneidungen umzugehen. Um Ihr Produktionsbudget einzuhalten, sollten Sie keine Seitenkerne und andere Mechanismen verwenden, es sei denn, dies ist unbedingt erforderlich.

Tip #2: Redesign the injection molded part to avoid undercuts

Undercuts always add cost and complexity, as well as maintenance to the mold. A clever redesign can often eliminate undercuts.

Tip #3: Make the injection molded part smaller

Smaller parts can be molded faster resulting in a higher production output, making the cost per part lower. Smaller parts also result in lower material costs and reduce the price of the mold.

Tipp 2: Passen Sie mehrere Teile in eine Form ein

IM 101 - Tipp 2: Passen Sie mehrere Teile in dieselbe Form ein

In einem vorherigen Abschnitt haben wir gesehen, dass das Einpassen mehrerer Teile in dieselbe Form eine gängige Praxis ist. Normalerweise passen sechs bis acht kleine identische Teile in ein und dieselbe Form, was die Gesamtproduktionszeit um etwa 80% verkürzt.

Teile mit unterschiedlichen Geometrien können auch in die gleiche Form passen (siehe Beispiel Modellflugzeug). Dies ist eine großartige Lösung zur Reduzierung der Gesamtkosten einer Baugruppe. Wie die Teile nicht sein sollten

Hier eine fortgeschrittene Technik:

In einigen Fällen ist der Hauptteil von zwei Teilen einer Baugruppe derselbe. Mit kreativem Design können Sie Verriegelungspunkte oder Scharniere an symmetrischen Stellen erstellen, die das Teil im Wesentlichen spiegeln. Auf diese Weise können beide Hälften mit derselben Form hergestellt werden, wodurch sich die Werkzeugkosten halbieren.

Tip #5: Avoid small details

To manufacture a mold with small details require longer machining and finishing times. Text is an example of this and might even require specialized machining techniques such as electrical discharge machining (EDM) resulting in higher costs.

Tip #6: Use lower grade finishes

Finishes are usually applied to the mold by hand, which can be an expensive process, especially for high-grade finishes. If your part is not for cosmetic use, don’t apply a costly high-grade finish.

Tipp 3: Minimieren Sie das Teilevolumen, indem Sie die Wandstärke verringern

IM 101 - Tipp 3: Minimieren Sie das Teilevolumen, indem Sie die Wandstärke verringern

Die Reduzierung der Wandstärke Ihres Teils ist der beste Weg, um das Teilevolumen zu minimieren. Auf diese Weise wird nicht nur weniger Material verbraucht, sondern auch der Spritzgusszyklus wird erheblich beschleunigt.

Zum Beispiel kann die Reduzierung der Wandstärke von 3 mm auf 2 mm die Zykluszeit um 50% bis 75% reduzieren.

Durch dünnere Wände kann die Form schneller gefüllt werden. Noch wichtiger ist, dass Teile, die dünner sind, viel schneller abkühlen und erstarren. Denken Sie daran, dass etwa die Hälfte des Spritzgusszyklus für die Verfestigung des Teils aufgewendet wird, während die Maschine im Leerlauf bleibt.

Es muss darauf geachtet werden, die Steifigkeit des Teils nicht zu stark zu verringern und seine mechanische Leistung nicht zu beeinträchtigen. Rippen können an wichtigen Stellen verwendet werden, um die Steifigkeit zu erhöhen.

Tip #8: Consider secondary operations

For lower volume productions (less than 1000 parts), it may be more cost effective to use a secondary operation to complete your injection molded parts. For example, you could drill a hole after molding rather than using an expensive mold with side-action cores.

Part 5

Mit dem Spritzguss starten

Wie geht es weiter, wenn Ihr Design fertig und für das Spritzgießen optimiert ist? In diesem Abschnitt führen wir Sie durch die Schritte, die erforderlich sind, um mit der Herstellung im Spritzgussverfahren zu beginnen.

Schritt 1: Klein anfangen und schnell Prototypen erstellen

IM 101 - Klein anfangen und schnell Prototypen erstellen

Bevor Sie sich für teure Spritzgusswerkzeuge entscheiden, erstellen und testen Sie zunächst einen funktionalen Prototyp Ihres Designs.

Dieser Schritt ist entscheidend für die Einführung eines erfolgreichen Produkts. Auf diese Weise können Entwurfsfehler frühzeitig erkannt werden, während die Änderungskosten immer noch niedrig sind.

Es gibt drei Lösungen für das Prototyping:

  1. 3D-Druck (mit SLS, SLA oder Material Jetting)
  2. CNC-Bearbeitung für Kunststoff
  3. Kleinserien-Spritzguss mit 3D-gedruckten Formen

Diese drei Prozesse können realistische Prototypen für Form und Funktion erzeugen, die dem Aussehen des fertigen Spritzgussprodukts sehr ähnlich sind.

Verwenden Sie die nachstehenden Informationen als schnelle Vergleichsanleitung, um zu entscheiden, welche Lösung für Ihre Anwendung am besten geeignet ist.

Prototyping mit 3D-Druck

Mindestmenge: 1 Teil
Typische Kosten: $ 20 - $ 100 pro Teil
Vorlaufzeit: 2 - 5 Werktage

Erfahren Sie mehr über diesen Prozess hier →

Für den Spritzguss optimierte Designs können einfach in 3D gedruckt werden.
Die Prototyping-Lösung mit den niedrigsten Kosten und dem schnellsten Turnaround.
Nicht jedes Spritzgussmaterial ist für den 3D-Druck verfügbar.
3D-Druckteile sind 30-50% schwächer als Spritzgussteile.

Prototyping mit CNC-Bearbeitung

Mindestmenge: 1 Teil
Typische Kosten: $ 100 - $ 500 pro Teil
Vorlaufzeit: 5 - 10 Tage

Erfahren Sie mehr über diesen Prozess hier: →

Materialeigenschaften identisch mit den Spritzgussteilen
Hervorragende Genauigkeit und Verarbeitung
Konstruktionsänderungen können erforderlich sein, da unterschiedliche Konstruktionsbeschränkungen gelten.
Teurer als 3D-Druck mit längerer Vorlaufzeit

Prototyping mit Kleinserien-Spritzguss

Mindestmenge: 10 - 100 Teile
Typische Kosten: $ 1000 - $ 4000 insgesamt
Vorlaufzeit: 5 - 10 Tage

Erfahren Sie mehr über diesen Prozess hier: →

Die realistischsten Prototypen mit genauen Materialeigenschaften
Das eigentliche Prozess- und Werkzeugdesign wird simuliert.
Die Prototyping-Lösung mit den höchsten Kosten
Geringere Verfügbarkeit als CNC oder 3D-Druck

Schritt 2: Führen Sie einen „Probelauf“ durch (500 - 10.000 Teile)

Probelauf durchführen (1000 - 10.000 Teile)

Nachdem das Design fertiggestellt ist, ist es an der Zeit, mit dem Spritzgießen in einem kleinen Pilotlauf zu beginnen.

Das Mindestbestellvolumen für das Spritzgießen beträgt 500 Stück. Für diese Mengen werden die Formen normalerweise aus Aluminium CNC-gefräst. Aluminiumformen sind relativ einfach herzustellen und kostengünstig (ab etwa 3.000 bis 5.000 USD), können jedoch bis zu 5.000 bis 10.000 Spritzzyklen standhalten.

Zu diesem Zeitpunkt variieren die typischen Kosten pro Teil zwischen 1 USD und 5 USD, abhängig von der Geometrie Ihres Designs und dem ausgewählten Material. Die typische Lieferzeit für solche Bestellungen beträgt 6-8 Wochen.

Lassen Sie sich nicht durch den Begriff „Probelauf“ verwirren. Wenn Sie nur einige tausend Teile benötigen, ist dies Ihr letzter Produktionsschritt.

Die Teile, die mit „Probe“-Aluminiumformen hergestellt wurden, haben dieselben physikalischen Eigenschaften und Genauigkeiten wie Teile, die mit Werkzeugstahlformen in „Großserienfertigung“ hergestellt wurden.

Schritt 3: Produktionssteigerung (über 100.000 Teile)

IM 101 - Produktionssteigerung (über 100.000 Teile)

Wenn Teile in großen Mengen von identischen Teilen hergestellt werden (von 10.000 bis über 100.000 Stück), sind spezielle Spritzgusswerkzeuge erforderlich.

Für diese Volumina werden die Formen aus Werkzeugstahl CNC-gefräst und halten Millionen von Spritzgusszyklen stand. Sie sind außerdem mit fortschrittlichen Funktionen ausgestattet, um die Produktionsgeschwindigkeit zu maximieren, z. B. Hot-Tip-Gates, also beheizte Angusskanäle, und komplizierte Kühlkanäle.

Die typischen Stückkosten variieren zu diesem Zeitpunkt zwischen einigen Cent und 1 USD, und die typische Vorlaufzeit beträgt 4 bis 6 Monate, da die Entwicklung und Herstellung der Form komplex ist.

Holen Sie sich online ein Spritzguss-Angebot ein

IM 101 - Erhalten Sie sofort ein Angebot für Spritzguss

Mit 3D Hubs ist die Auslagerung Ihrer Spritzgussproduktion ein Kinderspiel und zudem schnell und preisgünstig.

Durch die Kombination eines Netzwerks von Fertigungsdienstleistern mit unserer Smart-Sourcing-Engine können Sie sofort auf verfügbare Produktionskapazitäten zugreifen, um die bestmöglichen Angebote und Vorlaufzeiten zu erhalten.

Wenn Sie Ihre Entwürfe bei 3D Hubs hochladen, ermitteln unsere automatischen Analysetools Design for Manufacturability potenzielle Entwurfsprobleme schon vor Produktionsbeginn und erstellen Ihnen umgehend ein Angebot auf der Grundlage unseres Manufacturing Neural Network, das auf künstliche Intelligenz gestützt ist.

Auf diese Weise können Sie sicher sein, dass Sie für Ihre Spritzgussteile immer den besten Preis auf dem Markt zum schnellsten Zeitpunkt erhalten.

Part 6

Hilfreiche Ressourcen:

In diesem Führer haben wir alles angesprochen, was Sie für den Einstieg in das Spritzgießen benötigen. Es gibt jedoch noch viel mehr zu lernen.

Im Folgenden finden Sie die besten und nützlichsten Ressourcen zum Spritzgießen und zu anderen digitalen Fertigungstechnologien für diejenigen, die sich eingehender mit dem Thema befassen möchten.

3D Hubs Wissensbasis

Hier haben wir alles angesprochen, was Sie für den Einstieg in das Spritzgießen benötigen. In unserer Wissensbasis gibt es noch viel mehr zu erfahren - eine Sammlung technischer Artikel zu allen Fertigungstechnologien, die von Experten von 3D Hubs und der Fertigungsindustrie verfasst wurden.

Hier finden Sie eine Auswahl unserer beliebtesten Artikel zum Thema Spritzguss:

Andere Leitfäden

Möchten Sie mehr über die digitale Fertigung erfahren? Es gibt noch mehr Technologien zu erforschen: